Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 6730, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509153

RESUMEN

Human milk oligosaccharides (HMOs) impact neonate immunity and health outcomes. However, the environmental factors influencing HMO composition remain understudied. This study examined the associations between ambient air pollutant (AAP) exposure and HMOs at 1-month postpartum. Human milk samples were collected at 1-month postpartum (n = 185). AAP (PM2.5, PM10, NO2) exposure included the 9-month pregnancy period through 1-month postpartum. Associations between AAP with (1) HMO diversity, (2) the sum of sialylated and fucosylated HMOs, (3) 6 a priori HMOs linked with infant health, and (4) all HMOs were examined using multivariable linear regression and principal component analysis (PCA). Exposure to AAP was associated with lower HMO diversity. PM2.5 and PM10 exposure was positively associated with the HMO 3-fucosyllactose (3FL); PM2.5 exposure was positively associated with the sum of total HMOs, sum of fucosylated HMOs, and the HMO 2'-fucosyllactose (2'FL). PCA indicated the PM2.5, PM10, and NO2 exposures were associated with HMO profiles. Individual models indicated that AAP exposure was associated with five additional HMOs (LNFP I, LNFP II, DFLNT, LNH). This is the first study to demonstrate associations between AAP and breast milk HMOs. Future longitudinal studies will help determine the long-term impact of AAP on human milk composition.


Asunto(s)
Contaminación del Aire , Leche Humana , Lactante , Recién Nacido , Embarazo , Femenino , Humanos , Leche Humana/química , Dióxido de Nitrógeno/análisis , Oligosacáridos/análisis , Contaminación del Aire/análisis , Material Particulado
2.
J Nutr ; 154(1): 152-162, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37717629

RESUMEN

BACKGROUND: The taxonomic composition of the gut microbiome undergoes rapid development during the first 2-3 y of life. Poor diet during complementary feeding has been associated with alterations in infant growth and compromised bone, immune system, and neurodevelopment, but how it may affect gut microbial composition is unknown. OBJECTIVES: This cross-sectional study aimed to examine the associations between early-life nutrition and the developing infant gut microbiota at 6 mo of age. METHODS: Latino mother-infant pairs from the Mother's Milk Study (n = 105) were included. Infant gut microbiota and dietary intake were analyzed at 6 mo of age using 16S ribosomal RNA amplicon sequencing and 24-h dietary recalls, respectively. Poisson generalized linear regression analysis was performed to examine associations between dietary nutrients and microbial community abundance while adjusting for infants' mode of delivery, antibiotics, infant feeding type, time of introduction of solid foods, energy intake, and body weight. A P value of <0.05 was used to determine the statistical significance in the study. RESULTS: Infants with higher consumption of total sugar exhibited a lower relative abundance of the genera Bacteroides (ß = -0.01; 95% CI: -0.02, -0.00; P = 0.03) and genus Clostridium belonging to the Lachnospiraceae family (ß = -0.02; 95% CI: -0.03, -0.00; P = 0.01). In addition, a higher intake of free sugar (which excludes sugar from milk, dairy, and whole fruit) was associated with several bacteria at the genus level, including Parabacteroides genus (ß = 0.03; 95% CI: 0.01, 0.05; P = 0.001). Total insoluble fiber intake was associated with favorable bacteria at the genus level such as Faecalibacterium (ß = 0.28; 95% CI: 0.03, 0.52; P = 0.02) and Coprococcus (ß = 0.28; 95% CI: 0.02, 0.52; P = 0.03). CONCLUSION: These findings demonstrate that early-life dietary intake at 6 mo impacts the developing gut microbiome associated with the presence of both unfavorable gut microbes and dietary fiber-associated commensal microbes.


Asunto(s)
Microbioma Gastrointestinal , Lactante , Humanos , Microbioma Gastrointestinal/genética , Azúcares de la Dieta , Estudios Transversales , Bacterias/genética , Fibras de la Dieta , Leche Humana , ARN Ribosómico 16S/genética , Heces/microbiología
3.
PLoS One ; 18(11): e0290292, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38011083

RESUMEN

The animal gut microbiome is often a key requirement for host nutrition, digestion, and immunity, and can shift in relation to host geography and environmental factors. However, ecological drivers of microbiome community assembly across large geographic ranges have rarely been examined in invertebrates. Oreohelix strigosa (Rocky Mountainsnail) is a widespread land snail found in heterogeneous environments across the mountainous western United States. It is ideally suited for biogeography studies due to its broad distribution, low migration, and low likelihood of passive transport via other animals. This study aims to uncover large-scale geographic shifts in the composition of O. strigosa gut microbiomes by using 16S rRNA gene sequencing on samples from across its native range. Additionally, we elucidate smaller-scale microbiome variation using samples collected only within Colorado. Results show that gut microbiomes vary significantly across broad geographic ranges. Several possible ecological drivers, including soil and vegetation composition, habitat complexity, habitat type, and human impact, collectively explained 27% of the variation across Coloradan O. strigosa gut microbiomes. Snail gut microbiomes show more similarity to vegetation than soil microbiomes. Gut microbial richness was highest in the rocky habitats and increased significantly in the most disturbed habitats (low complexity, high human impact), potentially indicating signs of dysbiosis in the snails' gut microbiomes. These small-scale environmental factors may be driving changes in O. strigosa gut microbiome composition seen across large-scale geography. This knowledge will also help us better understand how microbial associations influence species survival in diverse environments and aid wildlife conservation efforts.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Humanos , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S/genética , Bacterias/genética , Suelo
4.
mSystems ; 8(6): e0080823, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37905810

RESUMEN

IMPORTANCE: Previous research has reported differences in the gut microbiome associated with varying body compositions. More specifically, within populations of mothers, the focus has been on the impact of gestational weight gain. This is the first study to examine postpartum weight change and its association with changes in the gut microbiome, similarly, it is the first to use a Latina cohort to do so. The results support the idea that weight gain may be an important factor in reducing gut microbiome network connectivity, diversity, and changing abundances of specific microbial taxa, all measures thought to impact host health. These results suggest that weight gain dynamically alters mothers' gut microbial communities in the first 6 months postpartum, with comparatively little change in mothers who lost weight; further research is needed to examine the health consequences of such changes.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Femenino , Humanos , ARN Ribosómico 16S , Periodo Posparto , Aumento de Peso
5.
Environ Res Health ; 1(3): 035002, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37692372

RESUMEN

Exposure to ambient and near-roadway air pollution during pregnancy has been linked with several adverse health outcomes for pregnant women and their babies. Emerging research indicates that microRNA (miRNA) expression can be altered by exposure to air pollutants in a variety of tissues. Additionally, miRNAs from breast tissue and circulating miRNAs have previously been proposed as a biomarker for breast cancer diagnosis and prognosis. Therefore, this study sought to evaluate the associations between pregnancy exposures to ambient (PM10, PM2.5, NO2, O3) and near-roadway air pollution (total NOx, freeway NOx, non-freeway NOx) with breast milk extracellular vesicle miRNA (EV-miRNA), measured at 1-month postpartum, in a cohort of 108 Latina women living in Southern California. We found that PM10 exposure during pregnancy was positively associated with hsa-miR-200c-3p, hsa-miR-200b-3p, and hsa-let-7c-5p, and was negatively associated with hsa-miR-378d. We also found that pregnancy PM2.5 exposure was positively associated with hsa-miR-200c-3p and hsa-miR-200b-3p. First and second trimester exposure to PM10 and PM2.5 was associated with several EV-miRNAs with putative messenger RNA targets related to cancer. This study provides preliminary evidence that air pollution exposure during pregnancy is associated with human milk EV-miRNA expression.

6.
Front Immunol ; 14: 1151870, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37492577

RESUMEN

Breast milk contains thousands of bioactive compounds including extracellular vesicle microRNAs (EV-miRNAs), which may regulate pathways such as infant immune system development and metabolism. We examined the associations between the expression of EV-miRNAs and laboratory variables (i.e., batch effects, sample characteristics), sequencing quality indicators, and maternal-infant characteristics. The study included 109 Latino mother-infant dyads from the Southern California Mother's Milk Study. Mothers were age 28.0 ± 5.6 and 23-46 days postpartum. We used principal components analysis to evaluate whether EV-miRNA expression was associated with factors of interest. Then, we used linear models to estimate relationships between these factors and specific EV-miRNA counts and analyzed functional pathways associated with those EV-miRNAs. Finally, we explored which maternal-infant characteristics predicted sequencing quality indicators. Sequencing quality indicators, predominant breastfeeding, and breastfeedings/day were associated with EV-miRNA principal components. Maternal body mass index and breast milk collection timing predicted proportion of unmapped reads. Expression of 2 EV-miRNAs were associated with days postpartum, 23 EV-miRNAs were associated with breast milk collection time, 23 EV-miRNAs were associated with predominant breastfeeding, and 38 EV-miRNAs were associated with breastfeedings/day. These EV-miRNAs were associated with pathways including Hippo signaling pathway and ECM-receptor interaction, among others. This study identifies several important factors that may contribute to breast milk EV-miRNA expression. Future studies should consider these findings in the design and analysis of breast milk miRNA research.


Asunto(s)
MicroARNs , Femenino , Humanos , Lactante , Adulto Joven , Adulto , MicroARNs/metabolismo , Leche Humana/metabolismo , Lactancia Materna , Índice de Masa Corporal , Madres
7.
Microbiome ; 10(1): 99, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35765039

RESUMEN

BACKGROUND: Museum biological specimens provide a unique means of gathering ecological information that spans wide temporal ranges. Museum specimens can also provide information on the microbial communities that persist within the host specimen. Together, these provide researchers valuable opportunities to study long-term trends and mechanisms of microbial community change. The effects of decades-long museum preservation on host-microbial communities have not been systematically assessed. The University of Colorado's Museum of Natural History has densely sampled Oreohelix strigosa (Rocky Mountainsnail) for the past century; many are preserved in ethanol, which provides an excellent opportunity to explore how the microbiome changes across time in preservation. RESULTS: We used 16S rRNA (ribosomal ribonucleic acid) gene amplicon sequencing to examine Oreohelix strigosa gut microbiomes from museum specimens across a 98-year range, as well as within short-term preservation treatments collected in 2018. Treatment groups included samples extracted fresh, without preservation; samples starved prior to extraction; and samples preserved for 1 month, 6 months, and 9 months. General microbiome composition was similar across all years. Sample groups belonging to specific years, or specific short-term treatments, showed unique associations with select bacterial taxa. Collection year was not a significant predictor of microbial richness, though unpreserved short-term treatments showed significantly higher richness than preserved treatments. While the year was a significant factor in microbiome composition, it did not explain much of the variation across samples. The location was a significant driver of community composition and explained more of the variability. CONCLUSIONS: This study is the first to examine animal host-associated microbiome change across a period of nearly one century. Generally, geographic location was a greater factor in shaping gut microbiome composition, rather than a year collected. Consistent patterns across this temporal range indicate that historic specimens can answer many ecological questions surrounding the host-associated microbiome. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Alimentos , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S/genética , Caracoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...